Status of Hyper-K and T2HKK

Hyper-Kamiokande

NPC Seminar Fermilab 2019.08.01

3 Generations of Kamiokande

3,000 ton

50,000 ton

2 x 260,000 ton

Kamiokande

1983-1996

Super-Kamiokande

1996-today (and beyond)

Hyper-Kamiokande

~2026-PPP

SN1987A

v oscillation

Super-K Tank Open (2018) → SK-Gd

Super-K Tank Open (2018) → SK-Gd

Now, Hyper-K 1st detector major funding from Japan is secured!

Announcement 2018.09.12

→ HK 1st detector construction starts in April 2020.

Funding request for the 2nd Korean detector will be proceeded to the Korean government.

International Hyper-K proto-collaboration

17 countries, ~80 institutes, ~300 members

Hyper-K Physics Program

Neutrino Sources & Fluxes

The Hyper-Kamiokande detector

HK Design Report: arXiv:1805.04163

superb capabilities for a broad area of science, proven feasibility

Optimized for cost and quick start

Total volume: 260kton per tank

Fiducial volume: 190kton per tank

(~×10 of Super-K per tank)

Start with one tank (funding request)

40% coverage with new sensor

×2 photon sensitivity

~40,000 50cm PMTs for inner det.

~6,700 20cm PMTs for outer det.

Hyper-K Site

Identical baseline (295km) and off-axis angle (2.5deg) to T2K₄

Enabling technology: new photosensors

HPK R12860

- Better performance than SK-PMT (R3600)
 - Photon detection efficiency ×2
 - Timing resolution ×2
 - Better pressure tolerance
- Intensive R&D for "multi-PMT" option by an international collaboration
 - Module of small PMTs in an enclosure

	SK (HR3600)	HK (HR12860)
Collection Efficiency	40~50%	70%
QE	22%	30%
Transit Time Spread (σ)	4.4 ns	2.2 ns
Rise Time	20 ns	10 ns
FWHM of signal	30 ns	18 ns 12

Status of New Photo Detectors

- Hamamatsu Box&Line PMT
 - ~140 PMTs were manufactured and installed to Super-K.
 - 5000 PMTs for JUNO, most of them arrived and waiting for waterproofing.
 - Mass production is ready for Hyper-K.
 - ► Final R&D to lower dark rate is ongoing.
- Hamamatsu HPD
 - 1 waterproof HPD was installed to the EGADS water tank for the proof test.
 - Need to establish a mass production technique for Hyper-K.
- NNVT MCP PMT
 - 15k PMTs for Juno, in production and waiting for waterproofing
 - ▶ Performance test and visual inspection are also ongoing near to Juno.
 - For Hyper-K, a prototype with waterproof cover and cable comes soon. Tuning for more improved high QE and lowered dark rate is ongoing.
- Incom LAPPD
 - 8-inch prototypes were realized and are being tested.
 - Need to establish mass production technique for the large number.

Light Collectors

Cost effective solution to enhance detection efficiency

Studies on light collection for KamLAND2-Zen

Winston cone

 \rightarrow x1.8 enhancement

Study with simulation and measurement

Test of stability, background, etc.

Wavelength shifting plate

PXPS12

Polystyrene w/ POPOP for test

8" R5912 PMT

Prototype

w/acrylic plate and mirror in edge for reflection

About 1.5 factor

in both measurement and simulation

Mirror optimization for WCD by S.Perasso https://indico.fnal.gov/event/5276/material/slides/0?contribId=66

Stefano Perasso - Winston Cones for WCD

Tested ligeV electron, Normal HK ligeV electron, HK w/ LC shape Ongoing Ongoing ligev electron, HK w/ LC light lig

multi-PMTs

International Effort

- Collection of small size (3 inch) PMTs in a single enclosure
- Adapted from KM3NET's original mPMT

Pro:

- --better timing properties
- --better directionality
- --better pressure tolerance
- --better vertex reconstruction near wall
 - → fiducial volume increase

Con:

larger number of channels

→ more expensive and power consumption

Hyper-K Two Detectors

E. Witten

"Why don't you bring one of the 2 tanks to Korea?" @EPP2010

T2HKK Inauguration July 10th 2016, London

Brief History of T2HKK/KNO (I)

- ☐ 2005/2006/2007: a large Cherenkov detector in Korea using J-PARC neutrino beam (T2KK) was suggested.
- → 3 joint workshops supported by KOSEF and JSPS.
- 2015: staged construction of two HK detectors at Kamioka
 2 X 260 kton → 1 X 260 kton (2017)
- ☐ March 20, 2016: initial discussion on T2HKK at Fermilab
- July 10, 2016: official kick-off meeting in London
 → T2HKK proposal was accepted in Hyper-K.
 T2HKK working group (WG10) was formed.
- ☐ Sept. 2, 2016: 1st domestic T2HKK workshop at SNU

Brief History of T2HKK/KNO (II)

- Nov.19, 2016: T2HKK white paper release to arXiv:1611.06118
 → published in PTEP in Mar. 2018.
- Nov. 21-22 2016: 1st International T2HKK workshop at SNU
- Nov. 2017: 2nd Domestic Workshop for T2HKK in KNU
- 6. July 2018: Hyper-K Satellite Meeting during ICHEP, Seoul.

https://indico.snu.ac.kr/indico/event/47/overview

- Nov. 2018: 3rd Domestic Workshop for T2HKK in KNU
- ☐ Aug 2019: Hyper-K Satellite Meeting during NuFACT at KNU

Neutrino Oscillations in Kamioka & Korea

Off-axis Beam and Matter Density

Matter profile along the T2K baseline

Matter term:

$$r_A = 2\sqrt{2}G_F N_e E_\nu / \Delta m_{31}^2$$

More matter effects

- → better MO determination
 - Longer baseline
 - Higher matter density
 - Higher neutrino energy

Energy vs. Baseline

Unique benefits of a Korean Detector

Biprobablitiy plots often used to compare experiments. (e.g. T2K vs NO ν A). Extend these to multiple energies, to gain understanding of 2nd maxima measurement.

Larger ellipses mean less sensitivity to systematic errors.

Shape differences unpick degeneracies with other parameters. (e.g. θ_{23})

Solid lines: Normal Hierarchy

New detector at Kamioka

Dotted lines: Inverted Hierarchy

improves statistics

Blue: Energy of peak QE rate
Red: median of high-energy tail
Green: " low-energy "

Detector in Korea measures parameters in a very different way

Benefits of the 2nd Detector in Korea

T2HKK = Tokai to(2) HK to Korea

The following physics sensitivities are improved by locating the 2nd detector to Korea

Neutrino mass ordering determination

1st&2nd oscillation maxima

> Leptonic CP violation measurement

Non-standard neutrino interaction

Higher v energy
Longer baseline
Higher matter
density

> Solar/SRN/v geo physics sensitivities

Important Questions

expected to be answered by Hyper-K/T2HKK.

- ➤ Leptonic CPV ?
- > v mass ordering determination?
- ➤ NSI ?
- Supernova burst/relic neutrinos ?
- Proton decay ?
- > Dark matter?
- etc.

In this talk

Why Leptonic CPV?

1. Which <u>flavor symmetry</u> model?

Understanding pattern of v mixing

Image credit: T. Ohlsson @KTH

Why CPV in Lepton Sector?

- CP structure in quark sector is well known.
 - → Small CPV in quark sector (< 10⁻⁷ %) can not explain baryon asymmetry of the universe.
- However, leptogenesis may explain baryon asymmetry, provided with large CPV in lepton sector.
- There is <u>hint</u> of maximal CPV in lepton sector.
 (~ 2sigma @T2K, NOvA)

$$P(\nu_{\mu} \to \nu_{e}) - P(\bar{\nu}_{\mu} \to \bar{\nu}_{e}) = -16s_{12}c_{12}s_{13}c_{13}^{2}s_{23}c_{23}$$

$$\sin \delta \sin \left(\frac{\Delta m_{12}^{2}}{4E}L\right) \sin \left(\frac{\Delta m_{13}^{2}}{4E}L\right) \sin \left(\frac{\Delta m_{23}^{2}}{4E}L\right)$$

Expected sensitivity: CP violation

- Exclusion of $\sin \delta_{CP} = 0$
 - $\sim 8\sigma(6\sigma)$ for $\delta = \pm 90^{\circ}(\pm 45^{\circ})$
 - >3 σ (>5 σ) significance for ~76%(58%) of δ_{CP} space
- δ_{CP} resolution:
 - 22° for δ_{CP} =±90°
 - 7° for δ_{CP} =0° or 180°

Seamless program of Japan-based experiments for study of CP-violation T2K→T2K-II→HK

δ_{CP} & MO Sensitivity Studies

- ** Simulation parameters **
- 2.7x10²² POT with $v : \overline{v} = 1 : 3$ operation ratio
 - → 10 years of operation with 1.3 MW beam
- 187 kton fiducial volume (compared to 22.5 kton for SK)
- Baseline to Korea is 1100 km
- Off-axis beam: 1.5°, 2.0°, 2.5°
- Oscillation parameters:

$$|\Delta m_{32}^2| = 2.5 \times 10^{-3} \text{ eV}$$

 $\sin^2 \theta_{23} = 0.5$
 $\sin^2 2\theta_{13} = 0.085$
 $\Delta m_{21}^2 = 7.53 \times 10^{-5} \text{ eV}$
 $\sin^2 \theta_{12} = 0.304$
 $\delta_{cp} = 0, \pi/2, \pi, 3\pi/2$

◆Note: Relatively simple systematic uncertainty model is used.
More realistic systematic uncertainty implementation is needed.

δ_{CP} Sensitivities

T2HKK has best sensitivity to CP phase (even) at the presence of NSI.

→ Danny Marfatia @ICHEP 2018 arXiv:1612.01443

32

Fraction of δ_{CP}

arXiv:1611.06118 PTEP 2018, 6, 1-56

Note: LBL sensitivity study was also independently done using GLoBES in PRD 96,033003 (2017).

δ_{CP} Precision Sensitivities

→ Very important for flavor symmetry model of neutrino mixing S. Petcov in ICHEP 2018

At maximum CP violation: JD+KD 1.5°: $\sigma(\delta_{CP})$ = 13~14 degree

JD x 2 : $\sigma(\delta_{CP}) \sim 17$ degree

JD x 1 : $\sigma(\delta_{CP})$ ~ 22 degree

b.f.v. of $\sin^2 \theta_{ij}$ (Esteban et al., Jan., 2018) + the prospective precision used.

Why v Mass Ordering (MO)?

Fractional Flavor Content varying $\cos\delta$

- 1. Important input to CPV measurement
- 2. Important input to flavor models

Current Status of v MO

** Cosmological measurement

(indirect / independent)

favors normal ordering 3 times

more from sum of v mass

 \triangleright Current best fit: normal ordering at 3.4 σ from global fit

Front. Astron. Space Sci., 09 October 2018

(T2K, NOvA) + (SK) + (DB, RENO, DC)

Mass Ordering Sensitivities (Beam v)

PTEP 2018,6, 1-56

Inverted

Beam + Atm. v Data

 \rightarrow Best way to determine ν mass ordering among [[ν oscillation, $0\nu\beta\beta$, cosmology]]

Octant Sensitivity: Beam + Atm.

 θ_{23} octant sensitivity

Important for MO & CPV measurements

Atmospheric Parameter Sensitivity

Neutrino oscillation parameters

High precision oscillation parameter measurement:

1.3% $\delta(\sin^2\theta_{23}) \sim 0.006 \text{ (for } \sin^2\theta_{23} = 0.45)$ 3% $\delta(\sin^2\theta_{23}) \sim 0.015 \text{ (for } \sin^2\theta_{23} = 0.50)$ $\delta(\Delta m^2_{32}) \sim 1.4 \times 10^{-5} \text{eV}^2$ $\sim 0.6\%$

Non-standard v Interaction Sensitivity

$$H = \frac{1}{2E} \begin{bmatrix} U \begin{pmatrix} 0 & 0 & 0 \\ 0 & \delta m_{21}^2 & 0 \\ 0 & 0 & \delta m_{31}^2 \end{pmatrix} U^{\dagger} + V \end{bmatrix} V = A \begin{pmatrix} 1 + \epsilon_{ee} & \epsilon_{e\mu} e^{i\phi_{e\mu}} & \epsilon_{e\tau} e^{i\phi_{e\tau}} \\ \epsilon_{e\mu} e^{-i\phi_{e\mu}} & \epsilon_{\mu\mu} & \epsilon_{\mu\tau} e^{i\phi_{\mu\tau}} \\ \epsilon_{e\tau} e^{-i\phi_{e\tau}} & \epsilon_{\mu\tau} e^{-i\phi_{\mu\tau}} & \epsilon_{\tau\tau} \end{pmatrix}$$

$$V = A \begin{pmatrix} 1 + \epsilon_{ee} & \epsilon_{e\mu} e^{i\phi_{e\mu}} & \epsilon_{e\tau} e^{i\phi_{e\tau}} \\ \epsilon_{e\mu} e^{-i\phi_{e\mu}} & \epsilon_{\mu\mu} & \epsilon_{\mu\tau} e^{i\phi_{\mu\tau}} \\ \epsilon_{e\tau} e^{-i\phi_{e\tau}} & \epsilon_{\mu\tau} e^{-i\phi_{\mu\tau}} & \epsilon_{\tau\tau} \end{pmatrix}$$

 $A \equiv 2\sqrt{2}G_F N_e E$ arXiv:1611.06118

PTEP 2018, 6, 1-56 T2HKK, OA 1.5, 3σ

T2HKK, OA 1.5, 3σ

D. Marfatia@ICHEP2018: arXiv:1612.01443

"T2HKK has the best sensitivity to CP phase (even) in the presence of NSI."

Muon shielding(Mt. Bisul)

Due to the detector being located deep underground, The background level is decreased

Detector site (overburden)	$\Phi (10^{-7} \mathrm{cm}^{-2} \mathrm{s}^{-1})$	\overline{E}_{μ} (GeV)
Mt. Bisul (820 m)	3.81	233
Mt. Bohyun (820 m)	3.57	234
Mt. Bisul (1,000 m)	1.59	256
Mt. Bohyun (1,000 m)	1.50	257
Hyper-K (Tochibora, 650 m)	7.55	203
Super-K	1.54	258

Supernova Burst Neutrinos

SN1987A @LMC

11 events @Kamiokande

O(1000) events @Hyper-K/KNO

Supernova burst neutrino

- Large statistics for galactic SN
 - Precise timing and energy information to probe SN mechanism
 - Pointing (2deg@10kpc) and timing for multi-messenger astronomy
- Nearby (>IMpc) SN
 - Check of dim SN, coincidence with GW telescope, ...

Supernova Relic Neutrinos (SRN)

Neutrinos emitted from past supernovae

SRN: Physics Motivation

Supernova Relic v (SRN) Sensitivity

Expected SRN events & significance plot

Difference due to 650 m (Japan) vs 1000 m (Korea) overburden

Proton Decay Search

- Only way to directly probe Grand Unified Theory
- Two major modes predicted by many models

Mediated by gauge bosons

$$p\left\{\begin{matrix} u \\ u \\ d \end{matrix}\right\} \xrightarrow{g} \left\{\begin{matrix} e^{\dagger} \\ \overline{d} \\ d \end{matrix}\right\} \pi^{0}$$

$$p \rightarrow e^{+}\pi^{0}$$

$$\Gamma(p \rightarrow e^{+}\pi^{0}) \sim \frac{g^{4}m_{p}^{5}}{M_{X}^{4}}$$

SUSY mediated

$$\Gamma(p \to \overline{v}K^+) \sim \frac{\tan^2 \beta \times m_p^5}{M_{\tilde{q}}^2 \times M_3^2}$$

Need broad searches including other possible modes

p→e⁺π⁰ search in Hyper-K

Background: Atmospheric Neutrinos

Improvement for Proton decay w/ Gd

Neutron multiplicity for

Atmospheric v BG

If one proton decay event is observed at Super-K after 10 years Current background level: 0.58 events/10 years Background with neutron anti-tag: 0.098 events/10 years

Background probability will be decreased from 44% to 9%.

Discovery Potential for p -> $e^+\pi^0$

- This mode's efficiency does not depend much on cathode coverage above 20%
- Background reduction though is improved by Gd loading

Discovery Potential for $p \rightarrow vK^+$

- Efficiency depends considerably on coverage
- Background reduction is improved by Gd loading

Proton Decay Limits & Sensitivities

Only way to directly probe GUT

Intermediate WCD (E61)

International Effort to reduce syst. error of HK

- Hyper-Kamiokande limited by systematics, not neutrino statistics
- E61 intermediate detector:
 - Kilo-ton scale water Cherenkov detector
 - Located ~1km from neutrino production point
 - Same technology as far detector
 - Increased cancellation of systematics
 - Measure neutrino beam at different off-axis angles

~1 km baseline

1-4° offaxis angle

- 500 mPMT
- Gd loading
- Site will be selected soon.

Beam Power History at MLF

Some candidate sites in Korea

Site candidates for a 2nd osc. maximum detector in Korea

- -- Baselines with 1,000~1,200 km
- -- 2.0~2.5° or 1.5~2.0° off axis beam directions
- -- >1,000 m high mountains with hard granite rocks

Site	OAB	Baseline [km]	Height [m]
Mt. Bisul	~1.3°	1088 km	1084 m
Mt. Hwangmae	~1.8°	1140 km	1113 m
Mt. Sambong	~1.9°	1180 km	1186 m
Mt. Bohyun	~2.2°	1040 km	1126 m
Mt. Minjuii	~2.2°	1140 km	1242 m
Mt. Unjang	~2.2°	1190 km	1125 m

Mt. Bisul Site

Mt. Bisul Site

Experimental Hall (Cavern) Construction

10.3.3 지하실험실구간 시공순서

T2HKK Detector Options

☐ Twice bigger detector w/less photo coverage? ☐ Gd loading? (proton decay, SRN) ☐ Water-based Liquid Scintillator? ☐ PMT options: 20 inch PMT **mPMT** SiPM etc... → We need sensitivity studies/R&D/detector design. → You have lots of opportunities in T2HKK/KNO!

Huge opportunities for new international collaborators!

WbLS Detector at Yemilab

Good demonstrator for T2HKK

Neutrino Telescope at Yemilab, Korea

arXiv:1903.05368

Seon-Hee Seo*

Center for Underground Physics,
Institute for Basic Science,
55 Expo-ro Yuseong-gu, Daejeon 34126, Korea

(Dated: March 13, 2019)

A new underground lab, Yemilab, is being constructed in Handuk iron mine, Korea. The default design of Yemilab includes a space for a future neutrino experiment. We propose to build a water-based liquid scintillator (WbLS) detector of 4~5 kiloton size at the Yemilab. The WbLS technology combines the benefits from both water and liquid scintillator (LS) in a single detector so that low energy physics and rare event searches can have higher sensitivities due to the larger size detector with increased light yield. No experiment has ever used a WbLS technology since it still needs some R&D studies, as currently being performed by THEIA group. If this technology works successfully with kiloton scale detector at Yemilab then it can be applied to future T2HKK (Hyper-K 2nd detector in Korea) to improve its physics potentials especially in the low energy region.

Yemilab @Handuk iron mine

~1 km depth

To be completed at the end of 2020

Hyper-K Construction Plan

Summary

Hyper-K: next generation multi-purpose v experiment. MeV - TeV 2 x 260 kton water detectors Physics sensitivities are improved w/ the 2nd detector in Korea. Neutrino mass ordering determination CPV, CP precision, CP coverage Non-standard v interaction Solar/SRN etc... ☐ World class discoveries are expected to be made. CPV, SN/SRN, proton decay etc... \Box Construction of the 1st detector in Japan starts in April 2020. \Box Site survey is done for T2HKK \rightarrow very promising results